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Abstract: This study addresses the disruptive impact of incidents on road networks, which
often lead to traffic congestion. If not promptly managed, congestion can propagate and
intensify over time, significantly delaying the recovery of free-flow conditions. We propose
an enhanced model based on an exponential decay of the time required for free flow recov-
ery between incident occurrences. Our approach integrates a shot noise process, assuming
that incidents follow a non-homogeneous Poisson process. The increases in recovery time
following incidents are modeled using exponential and gamma distributions. We derive
key performance metrics, providing insights into congestion risk and the unlocking phe-
nomenon, including the probability of the first passage time for our process to exceed a
predefined congestion threshold. This probability is analyzed using two methods: (1) an
exact simulation approach and (2) an analytical approximation technique. Utilizing the
analytical approximation, we estimate critical extreme quantities, such as the minimum
incident clearance rate, the minimum intensity of recovery time increases, and the maxi-
mum intensity of incident occurrences required to avoid exceeding a specified congestion
threshold with a given probability. These findings offer valuable tools for managing and
mitigating congestion risks in road networks.

Keywords: shot noise process; performance characteristics; congestion risk; incident
occurrences; incident clearance

MSC: 60G99; 60J25; 37N99

1. Introduction
The traffic flow of road networks is subject to a delicate balance between travel demand

and network capacity. However, this equilibrium can be disturbed by various incidents
such as accidents, road work, breakdowns, etc. These incidents lead to traffic congestion,
which degrades the capacity of networks and amplifies disturbances. Disruptions can
even appear when incidents are not treated and solved in time. In this work, we focus on
modeling the occurrence and duration of such incidents, specifically the time needed for
free flow recovery. Our research is based on an existing stochastic risk model for incident
occurrences and duration in road networks [1], which assumes a linear decay in the time
between consecutive incident occurrences. In this work, we propose a reformulation of the
model with an exponential decay of the time between consecutive incident occurrences.
This modification allows us to better capture the temporal dynamics of incident occurrences
and their impact on traffic flow.
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One of our aims is to capture the dynamics of the system, for which we make certain as-
sumptions. We consider an initial traffic state before incident occurrences. Then, we assume
that the increases in the time needed for free flow recovery after incident occurrences follow
probability distributions such as gamma and exponential distributions. Lastly, we model
the incident occurrences using a non-homogeneous Poisson process. We then develop
our model and derive some interesting performance characteristics. These derivations
are performed using exact methods whenever possible, and approximate methods are
employed when exact solutions are not feasible. The derived characteristics include the
expected and variance values of the time needed for the free flow recovery process, the
expected value of the first time when the process exceeds a given congestion threshold, and
the probability for the process to exceed a specified congestion threshold for the first time.
To compute the latter probability, we employ two distinct methods: (1) an exact simulation
method and (2) an analytic approximation method. The latter method relies on computing
the expected value of the first time when the process exceeds a given congestion threshold.
The derivation of these performance characteristics allows us to gain valuable insights into
the behavior of the free flow recovery process and its associated congestion risks. These
results contribute to a deeper understanding of the dynamics of road networks and aid in
the development of effective strategies to manage and mitigate congestion.

We illustrate our model and results with some numerical approximations for several
extreme quantities, including the following: the approximate minimum incident clearance
rate, the approximate maximum intensity of the incident occurrence process, and the
approximate maximum average value of the increment in the time needed for free flow
recovery following incident occurrences, all of which are requisite to limit congestion level
with respect to a specified probability. We also illustrate our findings with examples, figures,
and thorough interpretations and discussions. These results highlight the applicability and
effectiveness of capturing incident-induced congestion dynamics in road networks.

The structure of this paper is organized as follows. Section 2 presents existing works
in the literature relevant to our contribution. Section 3 introduces our new model, where
we assume an exponential decay for the time needed for the free flow recovery process in
road networks. We provide a comprehensive performance analysis of the time needed for
free flow recovery, including an examination of the probability of the first passage time for
our process to exceed a given congestion threshold. In Section 4, we present the results
of numerical simulations conducted for our proposed model. Section 5 focuses on the
practical applications of our model under two specific cases and various traffic conditions.
Finally, in Section 6, we summarize our findings, draw meaningful conclusions from the
study, and outline potential avenues for future research.

2. Existing Works
The existing literature includes numerous studies on modeling traffic incidents, non-

recurrent congestion, and incident duration and frequency. These studies have advanced
various techniques and methods in the field. Notably, three prominent research areas have
garnered significant attention:

Incident duration and frequency prediction models: Significant research focuses
on models that predict traffic incident duration and frequency to improve traffic manage-
ment and control. These models provide insights into incident dynamics and help assess
their impact on road networks. Previous studies employed various distributions to fit
incident duration based on observed datasets in road networks, such as the log-normal
distribution [2]. The authors of [3] introduced a parametric log-logistic accelerated failure
time model for predicting incident duration. In [4], a mixture risk competing approach
to predict the duration of different types of incidents was employed. In [5], a Weibull
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accelerated failure time model to fit the clearance accident duration was used. The authors
of [6] proposed a non-parametric regression model to estimate incident duration. Moreover,
in [7], tree-structured quantile regression was incorporated to model incident duration.
Bayesian networks were used in [8] to fit the detected incident duration. Machine learning
techniques were also employed for incident duration prediction, as demonstrated in [9].
The authors of [10] applied artificial neural networks to model the sequential prediction of
incident duration. Additionally, in [11], a comparative analysis of existing methods was
conducted for predicting incident duration in road networks.

Stochastic approach modeling the impact of incident occurrences on road traffic
flow: Stochastic modeling approaches have been widely used to understand the complex
behavior of traffic flow in the presence of incidents. Incidents, being stochastic events them-
selves, have the potential to disrupt traffic flow within road networks. In [12], the authors
addressed this by modeling the occurrence process and clearance time of incidents using
an M/M/c queuing system. This approach provided insights into the queuing behavior
of incidents and their impact on traffic flow. To capture the resulting traffic congestion
from incidents, the authors of [13] introduced a discrete-time non-linear stochastic model.
The latter effectively captured the dynamic effects of incidents on traffic flow, enabling
a comprehensive analysis of congestion patterns. In response to incidents, a stochastic
optimal control framework to manage real-time control of highway ramps was proposed
in [14]. The approach aimed to optimize traffic operations by considering the stochastic
nature of incidents and their impact on the ramp control strategies.

Traffic safety and risk assessment: Another crucial research area related to our work
is assessing risks associated with road traffic incidents. Studies aim to quantify risks and
develop methods for evaluating the safety implications of incidents. These assessments
help to create proactive strategies and policies for incident management and road safety
improvement. Extensive research has explored traffic safety risks, including incident and
congestion risks, using various methodologies. There are studies that focus on incident
risk as in [15] where the authors employed a K-means clustering analysis method to create
clusters representing different traffic flow states. They investigated the correlation between
accident risk and these traffic states by constructing conditional logistic regression models.
In another study [16], the focus was on predicting real-time accident precursor risk across
various types of freeway sections. There are other studies that examine congestion risk,
such as the statistical analysis implemented in [17] to measure both recurrent and non-
recurrent traffic congestion across different freeway sections. With another approach, a
dynamic Bayesian graph convolution network was developed to model the propagation of
both recurrent and non-recurrent traffic congestion [18].

Our contributions: Our modeling approach differs from the existing ones in the
literature. We incorporated here a new class of continuous temporal processes, based
on piece-wise deterministic Markov processes (PDMPs). Specifically, in our modeling,
we capture the dynamics of the evolution of the time needed for free flow recovery after
incident occurrences. Our first contribution consists in the derivation of congestion risk,
which also differs from the literature. Our congestion risk is calculated as the probability
that the time needed for free flow recovery exceeds a certain threshold. We notice that some
existing models are limited to estimating incident duration, whereas our model combines
the effect on time due to incident occurrences and free flow recovery after cleared incidents.
The model proposed in this article presents a reformulation of the existing model in [1].
Our model assumes an exponential decay of the time needed for free flow recovery, instead
of a linear decay as assumed in [1]. From this extension, we give some explicit formulas
and analytic approximations for certain indicators and measures of interest, interpreted in
terms of traffic resulting from incidents.
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3. The Model
In this section, we present our stochastic model for the evolution of the time needed

for free flow recovery following incident occurrences in a road network. The key feature
of our model is the assumption of an exponential decay in contrast to the linear decay
considered in the model presented in [1]. The introduction of an exponential decay in our
model allows for its applicability across all values of the time needed for free flow recovery.
Unlike the existing model [1], which necessitates re-initialization when the required time
for free flow recovery approaches zero, our extended model can handle all values of the
time needed for free flow recovery without any constraints. Assuming that the time needed
for free flow recovery is exponential, this is like assuming that the non-recurrent congestion
clearance speed is linear and depends on the incident clearance rate. We note that this rate
can be given by its average over the free flow recovery time, which permits us to calibrate
this rate in practice.

In our model, we maintain two important assumptions, traffic homogeneity and
stability, similar to the case of a linear decay in the required time for free flow recovery [1].
The inclusion of the first assumption (traffic homogeneity) is critical, as it enables the
modeling of the traffic state using a stochastic process. This assumption assumes that traffic
conditions remain consistent and do not vary significantly across the road network or the
specific part of the network under consideration. The second assumption (stability) is
necessary to ensure the reliability of all the parameters that govern the model throughout
the specified time period. This assumption guarantees that the model remains consistent
and applicable over the entire duration of interest, providing meaningful and accurate
results. It ensures that the underlying factors influencing the time needed for free flow
recovery remain stable and do not undergo significant changes that could affect the validity
of the model.

In our modeling approach, we focus exclusively on primary incidents occurring on a
specific road section or part of a road network. Secondary incidents, the spread of incidents,
and correlations among flows on adjacent roads are not considered. This simplification
allows us to focus on analyzing the direct impacts of primary incidents on traffic flow.

The model we present here is based on piece-wise deterministic Markov processes
(PDMPs) elaborated by Davis [19], and also used to model food risk in [20]. Our main
variable here is the stochastic process X, where X(s) denotes the time needed for free flow
recovery in a road network, at time step s, after incident occurrences. We characterize the
time needed for free flow recovery between two consecutive incident occurrences with an
exponential decay by assuming a linear stochastic differential equation, which is given
as follows:

Ẋ(s) = −V(X(s), c) = −cX(s), (1)

where

• X(s) is the time needed for free flow recovery, at time s.
• V(X(s), c) is a function modeling the non-recurrent congestion speed clearance as-

sumed to be linear.
• c is a parameter modeling the incident clearance rate. This rate c can be constant

or stochastic.

From Equation (1), {X(t)}t≥0 is given as follows (see, for example, [20]):

X(t) = X(0) +
N(t)

∑
i=1

Wi −
N(t)+1

∑
i=1

∫ min(Ti ,t)

Ti−1

V(X(s), c)ds, (2)

where
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• Wi are the increases in the time needed for flow recovery after incident occurrences,
for i ≥ 1.

• Ti with T0 = 0 represent the incident occurrence times, for i ≥ 1.

• N(t) =
∞

∑
i=1

1{Ti≤t} gives the counting number of incident occurrences before time t.

The incident occurrence process is denoted by {N(t)}t≥0.

Then, by rearranging (2), we obtain a shot noise process as follows [21]:

X(t) = X(0)e−ct +
N(t)

∑
i=1

Wie−c(t−Ti) (3)

A discrete-time expression of (3) is an auto-regressive process (see, for example, [20]):

X(Ti) = X(Ti−1)e−c∆Ti + Wi if i ≥ 1, with X(T0) = X(0). (4)

We denote x0 := X(0) as the initial state of the process {X(t)}t≥0.
For the model we propose here, we assume the following:

• The random variables (Wi)i∈N∗ are assumed to be mutually independent and iden-
tically distributed. We denote by FW(w) := P(Wi ≤ w) the cumulative distribution
probability of (Wi)i∈N∗ .

• The random variables (Ti)i∈N∗ with T0 = 0 are assumed to be independent.
• The random variables (∆Ti := Ti − Ti−1)i∈N∗ (which represent here the incident inter-

occurrence times) are assumed to be mutually independent and identically distributed
with a cumulative distribution probability G(s) := P(∆Ti ≤ s).

• The two random variables (Wi)i∈N∗ and the process {N(t)}t≥0 are independent.

Let us fix the following additional notation:

• Z(t) :=
N(t)

∑
i=1

Wi denotes the cumulative increase in the time needed for free flow

recovery after incident occurrences.
• b is a constant denoting the threshold on the time needed for free flow recovery, i.e.,

the congestion threshold.

We are interested in this paper in the derivation of some performance characteristics
of the process {X(t)}t≥0 having interpretations in terms of traffic flow recovery and traffic
incidents in road networks. These performance characteristics are defined as follows:

1. The expected values mX(t) and mX have finite and infinite time horizons, respectively,
and the variance values σ2

X(t) and σ2
X have finite and infinite time horizons for the

process {X(t)}t≥0. The two quantiles represent the expectations of the time needed
for free flow recovery process and their variations for the finite and infinite time
horizons, respectively.

2. Let τ denote the time needed for the free flow recovery to exceed a given congestion
threshold b, defined as follows:

τ := inf{s ≥ 0, X(s) > b | X(0) = x0}. (5)

We are interested in approximating the expected value Ex0(τ).
3. The cumulative distribution probability Fτ of τ is as follows:

Fτ(t) := P(τ ≤ t) = P(inf{s ≥ 0, X(s) > b | X(0) = x0} ≤ t). (6)
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We can link this probability distribution to sup0≤s≤t X(s) as follows:

Fτ(t) = P

(
sup

0≤s≤t
X(s) > b | X(0) = x0

)
. (7)

Figure 1 illustrates the evolution of the time needed for free flow recovery, with a
linear non-recurrent congestion speed clearance.

Figure 1. Illustration of process {X(t)}t≥0 (blue curve), with presentations of first passage time τ

(red arrow) and congestion threshold b (red line).

3.1. Performance Characteristics of Time Needed for Free Flow Recovery Process {X(t)}t≥0

We derive in this subsection some performance characteristics defined above for
the process {X(t)}t≥0 as given in (3). Specifically, these performance characteristics are
determined for the two specific cases where the incident occurrence process {N(t)}t≥0

follows a non-homogeneous Poisson distribution with intensity λ(t) > 0, ∀t ≥ 0, and the
increases in the time needed for free flow recovery after incident occurrences (Wi)i∈N∗ are
independent and identically distributed, with exponential distribution of intensity µ and
gamma distribution with parameters α and β.

3.1.1. The Probability Distribution of the Time Needed for Free Flow Recovery
Process {X(t)}t≥0

We give as follows the cumulative distribution function (cdf) and the probability
density function (pdf) denoted, respectively, by FX and fX for the time needed for free flow
recovery process {X(t)}t≥0:

FX(x, t) = P(X(t) ≤ x) = P(x0e−ct +
N(t)

∑
i=1

Wie−c(t−Ti) ≤ x)

=
∞

∑
n=0

P

(
N(t)

∑
i=1

Wie−c(t−Ti) ≤ x − x0e−ct | N(t) = n

)
P(N(t) = n)

=
∞

∑
n=0

H∗n
W,T(x − x0e−ct)P(N(t) = n), (8)
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and

fX(x, t) =
∂FX(x, t)

∂x
=

∞

∑
n=0

h∗n
W,T(x − x0e−ct)P(N(t) = n). (9)

For the calculated fX and FX , we use and assume the following:

1. fW and FW denote, respectively, the probability density and the cumulative distribu-
tion functions of the random variables (Wi)i∈N∗ , which are assumed to be independent
and identically distributed.

2. {N(t)}t≥0 is a non-homogeneous Poisson process; hence, P(N(t) = n) = (Λ(t))n

n! e−Λ(t),

with Λ(t) =
∫ t

0 λ(s)ds.
3. The conditional probability density function of the random variables (Ti)i∈N∗ is

kT(s) =
λ(s)
Λ(t) .

4. The joint cumulative distribution function H∗n
W,T (for n ≥ 2) is the n-fold convolution

of the joint cumulative distribution function H∗1
W,T = HW,T . Then, HW,T is as follows:

HW,T(x − x0e−ct) =
∫ t

0
P
(

Wie−c(t−Ti) ≤ x − x0e−ct | Ti = s
)

kT(s)ds

=
∫ t

0
P(Wi ≤

(
(xect − x0)e−cs)kT(s)ds

=
t

Λ(t)

∫ 1

0
FW
(
(xect − x0)e−cty)λ(yt)dy. (10)

We obtain the last Formula (10) by considering a change of variable defined as follows:

y =
s
t
, which implies dy =

1
t

ds.

Under this transformation:

• When s = 0, y = 0;
• When s = t, y = 1.

5. The joint probability density function h∗n
W,T (for n ≥ 2) is the n-fold convolution of the

joint probability density function h∗1
W,T = hW,T . Then, hW,T is as follows:

hW,T
(

x − x0e−ct) = ∂HW,T(x − x0e−ct)

∂x
=

t
Λ(t)

∫ 1

0
fW
(
(xect − x0)e−cty)λ(yt)dy. (11)

For detailed derivations of the cumulative distribution function (cdf) and the probabil-
ity density function (pdf) FX (given in (8)) and fX (given in (9)) for the time needed for free
flow recovery process {X(t)}t≥0 in our two specific cases where the incident occurrences
process {N(t)}t≥0 follows a homogeneous Poisson with intensity λ, (i.e., λ(t) = λ, ∀t ≥ 0),
and the increases in the time needed for free flow recovery after incident occurrences
(Wi)i∈N∗ are independent and identically distributed, with an exponential distribution of
intensity µ and a gamma distribution with parameters α and β, refer to Appendix A.

3.1.2. The Expected and Variance Values of the Time Needed for the Free Flow
Recovery Process

We give in this subsection the expected and the variance values of the time needed for
free flow recovery process {X(t)}t≥0:

mX(t) = E(X(t)) = E
(

x0e−ct +
N(t)

∑
i=1

Wie−c(t−Ti)

)
= x0e−ct +E

(
N(t)

∑
i=1

Wie−c(t−Ti)

)
,
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and

σ2
X(t) = V(X(t)) = V

(
x0e−ct +

N(t)

∑
i=1

Wie−c(t−Ti)

)
= V

(
N(t)

∑
i=1

Wie−c(t−Ti)

)
.

In the following, we use items 1, 2, and 3 from Section 3.1.1. According to [22], the mo-

ment generating function (mgf) of the process {Y(t)}t≥0 defined by Y(t) =
N(t)

∑
i=1

Wie−c(t−Ti)

is written as follows:

E
(

euY(t)
)
= e−Λ(t)

∞

∑
n=0

(M(u, t)Λ(t))n

n!
= eΛ(t)(M(u,t)−1),

where M(u, t) =
∫ t

0
kT(s)ψ(ue−c(t−s))ds, and ψ(ue−c(t−s)) =

∫ +∞

−∞
euwe−c(t−s)

fW(w)dw. Fi-

nally, the expected and the variance values for the time needed for the free flow recovery
process are as follows:

mX(t) = x0e−ct +


∂E
(

euY(t)
)

∂u


u=0

= x0e−ct +E(Wi)
∫ t

0
λ(s)e−c(t−s)ds,

and

σ2
X(t) =


∂2E

(
euY(t)

)
∂2u


u=0

−


∂E
(

euY(t)
)

∂u


2

u=0

= E(W2
i )
∫ t

0
λ(s)e−2c(t−s)ds.

Refer to Appendix B for detailed derivations of the expected and variance values of
the time needed for the free flow recovery process in the two particular cases considered in
Section 3.1.1.

3.1.3. The Probability Distribution of the First Passage Time for Process {X(t)}t≥0 to
Exceed a Given Congestion Threshold

In this part, we propose a method that approximates the probability distribution of
the first passage time for our process {X(t)}t≥0 to exceed a given congestion threshold,
defined in (6) and (7). According to [23], this method is based on a martingale families
technique. Let us first give some definitions.

Definition 1. We define several functions and quantities as follows (see [23]):

• Let K := sup{u ≥ 0 : EeuZ(1) < ∞}, where EeuZ(1) = eλ(mW (u)−1) is the moment
generating function of Z(t). Here, Z(t) represents the cumulative increase in the time needed
for free flow recovery after incident occurrences evaluated at t = 1, and mW(u) is the moment
generating function of the random variables (Wi)i∈N∗ of the increases in the time needed for
free flow recovery after incident occurrences.

• For u < K, we let ϕ(u) := log(EeuZ(1)), and g(u) =
1
c

∫ u

0
y−1ϕ(y)dy.

• Let ∆b(c) := X(τ) − b generally be with an unknown distribution and assumed to be
independent of τ. We can see that X(τ) corresponds to the value of the process {X(t)}t≥0 at
t = τ, which is also influenced by the rate c; see (3). Then, under these conditions (b → ∞,
c → 0), we have ∆b(c) → ∆b(0) as c → 0 and ∆b(0) → R∞ as b → ∞.
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Proposition 1. The probability distribution of the first passage time for our process {X(t)}t≥0 to
exceed a given congestion threshold is approximated as follows [23]:

Fτ(t) := P(τ ≤ t) ≈ Hτ(t) := 1 − exp
(
− t
Ex0(τ)

)
, (12)

where Ex0(τ) is the expected value of the first passage time for our process {X(t)}t≥0 to exceed a
given congestion threshold Ex0(τ), which is given as follows:

Ex0(τ) =
1
c

∫ K

0

(
Ex0(e

u∆b(c))− eu(x0−b)
)

u−1eub−g(u)du. (13)

We can also write Ex0(τ) as follows:

Ex0(τ) =
1
c

∫ K

0

(
Ex0(e

uR∞)− eu(x0−b)
)

u−1eub−g(u)du, (14)

where Definition 1 covers all necessary parameters and functions used in this proposition.

Proof. We refer the reader to Section 3 of [23] (and the references cited therein), which can
be viewed as a technical proof of Proposition 1.

Remark 1. Let us consider the case where the incident occurrences process is Poisson with intensity
λ, and the increases in the time needed for free flow recovery after incident occurrences (Wi)i∈N∗

are gamma distributed with two parameters α and β. In this specific case, we denote the function
g by g(P,G), the expected value of the first passage time for our process {X(t)}t≥0 to exceed a
given congestion threshold by E(P,G)

x0 (τ), and the exponential approximation probability of the first

passage time for our process {X(t)}t≥0 to exceed a given congestion threshold by H(P,G)
τ (t). Then,

we have the following.

• The function g(P,G) is given as follows:

g(P,G)(u) :=
λ

c

∫ u

0

(1 − βy)−α − 1
y

dy =
λ

c
βαu 3F2(1, 1, α + 1; 2, 2; βu), u <

1
β

, (15)

where 3F2(1, 1, 1 + α; 2, 2; βu) =
∞

∑
n=0

(1)n(1)n(1 + α)n

(2)n(2)n

(βu)n

n!
is the specific function of the

generalized hyper-geometric function, and (.)n = Γ(.+n)
Γ(.) , where (.)n is the Pochhammer

symbol, and Γ(.) is the gamma function.
• The expected value of the first passage time for our process {X(t)}t≥0 to exceed a given

congestion threshold E(P,G)
x0 (τ) is given as follows:

E(P,G)
x0 (τ) =

1
c

∫ K

0

(
Mα,β(u)− eu(x0−b)

)
u−1 exp

(
ub − λ

c
βαu3F2(1, 1, α + 1; 2, 2; βu)

)
du, K =

1
β

, u < K, (16)

where Ex0(e
uR∞) :=

∞

∑
n=0

un

n!
E(Rn

∞) =
∞

∑
n=0

un

n!
E(Wn+1

i )

(n + 1)E(Wi)
.

Specifically for this case, we have

Ex0(e
uR∞) = Mα,β(u) =

∞

∑
n=0

(βu)n

(n + 1)!
(α + 1)n =

(1 − βu)−α − 1
αβu

.
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By putting βu = v, and βdu = dv, we obtain

E(P,G)
x0 (τ) =

1
c

∫ K

0

(
(1 − v)−α − 1

αv
− e

v
β (x0−b)

)
v−1

exp
(

v
β

b − λ

c
αv3F2(1, 1, α + 1; 2, 2; v)

)
dv, K = 1, v < K. (17)

• The exponential approximation probability of the first passage time for our process {X(t)}t≥0

to exceed a given congestion threshold H(P,G)
τ (t) is given as follows:

H(P,G)
τ (t) = 1 − exp

(
− t

E(P,G)
x0 (τ)

)
. (18)

Remark 2. Let us consider the case where the incident occurrences process is Poisson with intensity
λ, and the increases in the time needed for free flow recovery after incident occurrences (Wi)i∈N∗

are exponentially distributed with intensity µ (and hence α = 1 and β = 1/µ). In this specific
case, we denote the function g by g(P,E), the expected value of the first passage time for our process
{X(t)}t≥0 to exceed a given congestion threshold by E(P,E)

x0 (τ), and the exponential approximation
probability of the first passage time for our process {X(t)}t≥0 to exceed a given congestion threshold
by H(P,E)

τ (t). Then, we have the following:

• The function g(P,E) is given as follows (by taking from (15) α = 1 and β = 1/µ; see [23]):

g(P,E)(u) := −λ

c
log
(

1 − u
µ

)
, u < µ. (19)

• The expected value of the first passage time for our process {X(t)}t≥0 to exceed a given

congestion threshold E(P,E)
x0 (τ) is given as follows:

E(P,E)
x0 (τ) =

1
c

∫ K

0

((
1 − u

µ

)−1
− eu(x0−b)

)
u−1eub

(
1 − u

µ

) λ
c

du, K = µ, u < K, (20)

where Ex0(e
uR∞) = Mα=1,β= 1

µ
(u) =

∞

∑
n=0

( u
µ )

n

(n + 1)!
(2)n =

(
1 − u

µ

)−1
.

Then, by putting µv = u → µdv = du, we obtain a similar formula to (12), from refer-
ence [23], as follows:

E(P,E)
x0 (τ) =

1
c

∫ K

0

(
eµbv − eµx0v(1 − v)

)
v−1(1 − v)

λ
c −1dv, K = 1, v < K. (21)

• The exponential approximation probability of the first passage time of our process {X(t)}t≥0

to exceed a given congestion threshold H(P,E)
τ (t) is given as follows:

H(P,E)
τ (t) = 1 − exp

(
− t

E(P,E)
x0 (τ)

)
, (22)

where E(P,E)
x0 (τ) is given by the equivalent Formulas (20), (21), and (A1) from Appendix C.

4. Numerical Simulation
We first give in this section an algorithm (Algorithm 1) that allows us to perform the

steps of a numerical simulation of the time needed for free flow recovery process {X(t)}t≥0,
for the two specific cases where the incident occurrences process {N(t)}t≥0 follows a non-
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homogeneous Poisson with intensity λ(t) > 0, ∀t ≥ 0, and the increases in the time needed
for free flow recovery after incident occurrences (Wi)i∈N∗ are independent and identically
distributed, with an exponential distribution of intensity µ and a gamma distribution with
parameters α and β.

Algorithm 1 Steps of numerical simulation of the time needed for free flow recovery process
{X(t)}t≥0

• Specify parameters of the model: X(0) = x0: initial state; c: intensity of the traffic flow
recovery; T: time of simulation.

• Calculate λ̃ = max0≤t≤T λ(t).
• Initialize T0 = 0, i = 1.
• While Ti−1 < T:

1. Generate u ∼ uni f (0, 1).
2. Set Ti = Ti−1 − log(u)/λ̃.
3. Generate K ∼ uni f (0, 1).
4. Test accepting instant of incident occurrence Ti with probability λ(Ti)/λ̃.
5. Verify the condition of test K ≤ λ(Ti)/λ̃.
6. i = i + 1.

• End while.
• Save incident occurrence times Ti with T0 = 0.
• Generate for each incident occurrence time Ti the increase in the time needed for

free flow recovery Wi. This is performed using the probability distribution FW (e.g.,
Exponential(µ), Gamma(α, β)).

• Simulate the time needed for free flow recovery X(Ti) = X(Ti−1)e−c∆Ti + Wi, for
1 ≤ i ≤ N(t).

Figure 2 illustrates the simulation of the time needed for the free flow recovery process,
where we consider two cases: (1) the incident occurrences process is homogeneous Poisson
with intensity λ (i.e., λ(t) = λ, ∀t ≥ 0), and the increases in the time needed for free flow
recovery after incident occurrences (Wi)i∈N∗ are independent and identically distributed
with a gamma distribution with two parameters α and β, and (2) the incident occurrences
process is homogeneous Poisson with intensity λ (i.e., λ(t) = λ, ∀t ≥ 0), and the increases in
the time needed for free flow recovery after incident occurrences (Wi)i∈N∗ are independent
and identically distributed with an exponential distribution with intensity µ.

Figure 2. Left side: Numerical simulation of the process {X(t)}t≥0, where λ = 0.02, α = 3, β = 7,
x0 = 0, c = 0.05, T = 1000, (blue color), and congestion threshold b = 100 (red color). Right side:
Numerical simulation of the process {X(t)}t≥0, where λ = 0.015, µ = 0.03, x0 = 0, c = 0.05, T = 1000
(blue color), and congestion threshold b = 200 (red color).

Figure 3 gives a 3D illustration of the probability of the first passage time for our
process {X(t)}t≥0 to exceed a given congestion threshold with an exact simulation method,
and a 3D illustration of the exponential approximation probability of the first passage time
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for our process {X(t)}t≥0 to exceed a given congestion threshold. The simulations involved
varying the incident clearance rate c and the time t. For the two specific cases given above,
we have the following:

• Instead of F(P,G)(S)

τ (t) and F(P,E)(S)
τ (t), we denote, respectively, F(P,G)(S)

τ (c, t) and

F(P,G)(S)

τ (c, t).
• Instead of H(P,G)

τ (t) (see (18)) and H(P,E)
τ (t) (see (22)), we denote, respectively,

H(P,G)
τ (c, t) and H(P,E)

τ (c, t).

We then present the deviation between the calculation of the probabilities with the

3D illustrations, and those presented by the calculation of Γ(P,G)(c, t) = F(P,G)(S)

τ (c, t)−
H(P,G)

τ (c, t) and Γ(P,E)(c, t) = F(P,E)(S)
τ (c, t)− H(P,E)

τ (c, t).

(a)

(b)

Figure 3. 3D illustration of the probability of the first passage time for our process to exceed a
given congestion threshold using two methods (exact simulation and exponential approximation),

with their deviations. (a) Numerical calculus of F(P,G)(S)

τ (c, t), H(P,G)
τ (c, t) and Γ(P,G)(c, t), where

x0 = 0, λ = 0.02, α = 3, β = 7, b = 100. (b) Numerical calculus of F(P,E)(S)
τ (c, t), H(P,E)

τ (c, t) and
Γ(P,E)(c, t), where x0 = 0, λ = 0.015, µ = 0.03, b = 200.

5. Applications
In this part, we give some interesting applications for the time needed for the free

flow recovery process on a part of a road network. We consider that b > max(x0, mX),

where mX =
λ

c
E(Wi) is the expected value of time needed for free flow recovery on infinite

time-horizon (stationary expected value), and hence, c → 0 and b → ∞; see Definition 1.
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5.1. Determination of Approximate Minimum Value of Incident Clearance Rate Needed to Limit
Congestion Level with Respect to Given Probability

We do not provide in this work the exact expression of the probability of the first
passage time for our process {X(t)}t≥0 to exceed a given congestion threshold Fτ(t). In-
stead, we propose an analytic approximation, denoted as Hτ(t); see Proposition 1. We
determine in this subsection the approximate minimum value of the incident clearance rate
needed to limit a given congestion level with respect to a given probability. To obtain this
approximate minimum value, we rely on historical data sets where the incident occurrence
process follows a homogeneous Poisson distribution with intensity λ, and the increases in
the time needed for free flow recovery after incident occurrences are gamma distributed
with two parameters α and β, or exponentially distributed with intensity µ. In order to
place greater emphasis on the incident clearance rate, noted c, we emphasize its central
role in the following analysis: Instead of the two probabilities Fτ(t) (see (6) or (7)) and
Hτ(t) (see (12) in Proposition 1), we denote, respectively, Fτ(x0, b, c, t) and Hτ(x0, b, c, t).
We also denote Ex0,b,c(τ) instead of Ex0(τ). Instead of the two specific approximate prob-

abilities H(P,G)
τ (t) (see (18) in Remark 1) and H(P,E)

τ (t) (see (22) in Remark 2), we denote,
respectively, H(P,G)

τ (x0, b, c, t) and H(P,E)
τ (x0, b, c, t). Also, instead of the two specific approx-

imate expected values E(P,G)
x0 (τ) (see (16) in Remark 1) and E(P,E)

x0 (τ) (see for example (21))

in Remark 2), we denote, respectively, E(P,G)
x0,b,c (τ) and E(P,E)

x0,b,c(τ). Therefore, we have the
following proposition:

Proposition 2. The probabilities Fτ(x0, b, c, t) and Hτ(x0, b, c, t) are decreasing with respect to c.

Proof. For Fτ(x0, b, c, t), we have the following: By adopting the same direct proof of
Proposition 2 from [1] (with the only difference here being consideration of the process
{X(t)}t≥0 (given by (3) or (4))).

For Hτ(x0, b, c, t), we have

∂Hτ(x0, b, c, t)
∂c

= − t
Ex0,b,c(τ)

2

∂Ex0,b,c(τ)

∂c
exp

(
− t
Ex0,b,c(τ)

)
< 0,

where
∂Ex0,b,c(τ)

∂c
> 0 with the fact that c > λ

b E(Wi), and as b → ∞, c → 0; see Definition 1.

Specifically, for the approximate probabilities H(P,G)
τ (x0, b, c, t) and H(P,E)

τ (x0, b, c, t),
we have the following:

1.
∂H(P,G)

τ (x0, b, c, t)
∂c

< 0 where
∂E(P,G)

x0,b,c (τ)

∂c
> 0 with particular regard to the fact that

c > λ
b αβ, and as b → ∞, c → 0; see Definition 1.

2.
∂H(P,E)

τ (x0, b, c, t)
∂c

< 0 where
∂E(P,E)

x0,b,c(τ)

∂c
> 0, with particular regard to the fact that

c > λ
bµ , and as b → ∞, c → 0; see Definition 1.

5.1.1. Analysis over Finite Time Horizon

The purpose of the analysis in this subsection is to determine the approximate min-
imum value of the incident clearance rate needed to avoid a given congestion threshold
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b with a given probability p. This minimum value is approximated as c̃(x0, b, p, t) and is
given as follows:

c̃(x0, b, p, t) = H−1
τ (x0, b, p, t) := min

{
c >

λ

b
E(Wi), Hτ(x0, b, c, t) ≤ 1 − p

}
, (23)

where H−1
τ (x0, b, p, t) is the pseudo-inverse of Hτ(x0, b, c, t).

Two specific cases are presented as follows, where the following hold:

1. The incident occurrences process is Poisson with intensity λ and the increases in
the time needed for free flow recovery after incident occurrences are gamma dis-
tributed with two parameters α and β. In this specific case, the approximate value
of the minimum incident clearance rate is denoted by c̃(P,G)(x0, b, p, t) and is given
as follows:

c̃(P,G)(x0, b, p, t) = H
−1(P,G)
τ (x0, b, p, t) := min

{
c >

λαβ

b
, H(P,G)

τ (x0, b, c, t) ≤ 1 − p
}

, (24)

where H
−1(P,G)
τ (x0, b, p, t) is the pseudo-inverse of H(P,G)

τ (x0, b, c, t).
2. The incident occurrences process is Poisson with intensity λ and the increases in the

time needed for free flow recovery after incident occurrences are exponential dis-
tributed with intensity µ. In this specific case, the approximate value of the minimum
incident clearance rate is denoted by c̃(P,E)(x0, b, p, t), and is as follows:

c̃(P,E)(x0, b, p, t) = H
−1(P,E)
τ (x0, b, p, t) := min

{
c >

λ

bµ
, H(P,E)

τ (x0, b, c, t) ≤ 1 − p
}

, (25)

where H
−1(P,E)
τ (x0, b, p, t) is the pseudo-inverse of H(P,E)

τ (x0, b, c, t).

The analytic formula of the approximate minimum value c̃(x0, b, p, t) is not derived.
Specifically, the analytic formulas approximate minimum values c̃(P,G)(x0, b, p, t) and
c̃(P,E)(x0, b, p, t) are not derived. However, Hτ(x0, b, c, t) is decreasing with respect to
c; (c > λ

b E(Wi). This also applies to two special cases: (1) H(P,G)
τ (x0, b, c, t) is decreasing

with respect to c; (c > λ
b αβ), and (2) H(P,E)

τ (x0, b, c, t) is decreasing with respect to c (c > λ
bµ );

see Proposition 2. We propose here to calculate numerically the two approximate minimum
values c̃(P,G)(x0, b, p, t) and c̃(P,E)(x0, b, p, t) by employing one of the following algorithms:
dichotomy, Fibonnacci, or the gold number.

5.1.2. Description of Data Sets

We present in this subsection two data sets:

1. For the first data set, we describe the incident data collected in [24] for the morning
and evening peak periods (7:00–10:00 a.m. and 4:00–7:00 p.m.), from 1 January 2003
to 30 April 2003, on the southbound I-405, Seattle, Washington. We present some
data metrics in Table 1 concerning the number of incidents and the increases in the
time needed for free flow recovery after incident occurrences. Various continuous
and discrete distributions were tested to fit the increases in the time needed for free
flow recovery after incident occurrences and the number of incidents, respectively.
Parameters were obtained using Maximum Likelihood Estimation (MLE). Goodness-
of-fit tests (Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared) indicate that
a gamma distribution with parameters α = 2.14026 and β = 7.83599 best fits the
increases in the time needed for free flow recovery after incident occurrences, while a
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Poisson distribution with parameter λ = 5.0119 per 6 h of time period best fits the
number of incident occurrences. These results are shown in Figure 4.

Table 1. Summary of metrics for the number of incidents and the increases in the time needed for
free flow recovery after incident occurrences data.

Data Types

Number of incidents data Increases in the time needed for free flow recovery after
incident occurrences data

Metrics Value Metrics Value

Sample size 84 Sample size 84
Min 1 Min 1

Mean 5.0119 Mean 16.7710
Std. Deviation 2.8770 Std. Deviation 10.7241

Coef. of variation 0.5740 Coef. of variation 0.6394
Std. Error 0.3139 Std. Error 1.1701
Skewness 1.2493 Skewness 1.0395

Max 15 Max 54

Figure 4. Left side: Empirical cumulative distribution function for the number of incidents data fitted
by a Poisson cumulative distribution function with intensity λ = 5.0119 per 6 h of the time period.
Right side: Empirical cumulative distribution function for the increases in the time needed for free
flow recovery after incident occurrences data fitted by a gamma cumulative distribution function
with the two parameters α = 2.14026 and β = 7.83599 .

2. For the second data set, it is described in [1] for a 1 km freeway segment of I-880
located in Hayward, Alameda County, California, USA, during the spring of 1993.
The incident occurrences follow a homogeneous Poisson process with an intensity of
λ = 0.00833, and the increases in the time needed for free flow recovery after incident
occurrences are modeled by an exponential distribution with an intensity of µ = 0.04.

5.1.3. Numerical Results

In this subsection, we give some significant numerical results from Example 1 and
graphical illustrations. Two specific cases are discussed.

Example 1. From the two data sets described above, the following is considered:

• For the first case c̃(P,G)(x0, b, p, t):

1. We take λ = 0.014 (the intensity of incident occurrences process) and α = 2.14026
and β = 7.83599 (the two parameters estimated for the gamma distribution of the
increases in the time needed for free flow recovery after incident occurrences). By
using Formula (24), we calculate the approximate values for the minimum clearance
rate needed to avoid the congestion threshold b with respect to the probability p for
the finite time horizons t = 7500 and t = 15,000. For instance, Figure 5a shows
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c̃(P,G)( b
5 , b, p, t). Then, we have, for example, c̃(P,G)(20, 100, 0.85, 7500) = 0.016 and

c̃(P,G)(20, 100, 0.85, 15,000) = 0.0213.
2. Instead of λ = 0.014 (the intensity of incident occurrences process), we take λ = 0.03.

Similarly, we calculate the approximate values for the minimum clearance rate needed to
avoid the congestion threshold b with respect to the probability p, for the finite time horizons
t = 7500 and t = 15,000. Figure 5b shows c̃(P,G)( b

5 , b, p, t). Then we have, for example,
c̃(P,G)(20, 100, 0.85, 7500) = 0.0470, and c̃(P,G)(20, 100, 0.85, 15,000) = 0.0642.

• For the second case c̃(P,E)(x0, b, p, t):

1. We take λ = 0.00833 (the intensity of incident occurrences process) and µ = 0.04
(the intensity of the increases in the time needed for free flow recovery after incident
occurrences). Using Formula (25), we calculate the approximate values for the min-
imum clearance rate needed to avoid the congestion threshold b with respect to the
probability p for the finite time horizons t = 10,000 and t = 20,000. In Figure 6a, we
present c̃(P,E)(0, b, p, 10,000) and c̃(P,E)(0, b, p, 20,000). Then, for example, we have
c̃(P,E)(0, 190, 0.80, 10,000) = 0.0095 and c̃(P,E)(0, 180, 0.8, 20,000) = 0.0180.

2. Instead of λ = 0.00833 (the intensity of incident occurrences process), we take λ = 0.02.
In the same way as the above instance, we calculate the approximate values for the
minimum clearance rate needed to avoid the congestion threshold b with respect to the
probability p for the finite time horizons t = 10,000 and t = 20,000. In Figure 6b,
we show c̃(P,E)(0, b, p, 10,000) and c̃(P,E)(0, b, p, 20,000). Then, for example, we have
c̃(P,E)(0, 190, 0.80, 10,000) = 0.0545 and c̃(P,E)(0, 180, 0.8, 20,000) = 0.4443.

5.1.4. Interpretation of Results

Figures 5 and 6 show a 3D illustration and contour lines for two specific cases of the
numerical presentation of the approximate minimum values of incident clearance rate,
which we denoted, respectively, by c̃(P,G)(x0, b, p, t) and c̃(P,E)(x0, b, p, t). These approxi-
mate minimum values of the incident clearance rate are given as a function of the traffic
congestion threshold b and the probability p. Following from Figures 5 and 6 for the
two specific cases presented with fixed two different finite times and initial states, we
have the following comments: First, we observe that the approximate minimum values
c̃(P,G)(x0, b, p, t) and c̃(P,E)(x0, b, p, t) increase with respect to the probability p, which can
be interpreted as the fact that road operators prioritize a high level of assurance (reflected
by a high value of p) in ensuring that the congestion threshold b is not surpassed; thus,
they need to guarantee prompt incident resolution, and it is essential to step up efforts
by allocating additional resources such as equipment, personnel, and other necessary
means. Second, we can see that the approximate minimum values c̃(P,G)(x0, b, p, t) and
c̃(P,E)(x0, b, p, t) decrease with respect to the congestion threshold b. This means that if
road operators do not intend to exceed the low-level of congestion threshold b, they need
to promptly address incidents by enhancing their efforts, such as deploying additional
equipment, increasing staff numbers, etc. Third, we can see that the approximate minimum
values c̃(P,G)(x0, b, p, t) and c̃(P,E)(x0, b, p, t) increase with respect to t. Similarly, if road
operators aim to prevent the congestion threshold b from being exceeded for extended
periods of time t, they must promptly address incidents by intensifying their efforts, which
may involve deploying additional equipment, increasing staff numbers, and implementing
other appropriate measures. Fourth, we can see that the approximate minimum values
c̃(P,G)(x0, b, p, t) and c̃(P,E)(x0, b, p, t) increase due to an increase in the intensity of incident
occurrences process and fixed parameters of the known distribution of the increases in the
time needed for free flow recovery due to the incident occurrences (gamma or exponential
distributions). The increase in these minimum values can be interpreted as the need for
high level of assurance from the road operators that the congestion threshold b will not be
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reached. In order to achieve this, they must significantly increase their efforts in resolving
incidents promptly. This could involve multiplying their resources, such as equipment and
staff, dedicated to effectively managing and resolving incidents in a timely manner.

(a)

(b)

Figure 5. 3D illustration and contour lines of c̃(P,G)(x0, b, p, t). (a) 3D illustration of c̃(P,G)

(x0 = b
5 , b, p, t = 7500) (top left) with its contour lines (bottom left), and 3D illustration of

c̃(P,G)(x0 = b
5 , b, p, t = 15,000) (top right) with its contour lines (bottom right), for λ = 0.014,

α = 2.14026 and β = 7.83599. (b) 3D illustration of c̃(P,G)(x0 = b
5 , b, p, t = 7500) (top left) with its

contour lines (bottom left), and 3D illustration of c̃(P,G)(x0 = b
5 , b, p, t = 15,000) (top right) with its

contour lines (bottom right), for λ = 0.03, α = 2.14026 and β = 7.83599.
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(a)

(b)

Figure 6. 3D illustration and contour lines of c̃(P,E)(x0, b, p, t). (a) 3D illustration of c̃(P,E)(x0 =

0, b, p, t = 10,000) (top left) with its contour lines (bottom left), and 3D illustration of c̃(P,E)(x0 =

0, b, p, t = 20,000) (top right) with its contour lines (bottom right), for λ = 0.00833, µ = 0.04. (b) 3D
illustration of c̃(P,E)(x0 = 0, b, p, t = 10,000) (top left) with its contour lines (bottom left), and 3D
illustration of c̃(P,E)(x0 = 0, b, p, t = 20,000) (top right) with its contour lines (bottom right), for
λ = 0.02, µ = 0.04.

5.2. Determination of Approximate Maximum Intensity of Incident Occurrences Process Needed to
Limit Congestion Level with Respect to Given Probability

As in Section 5.1, we do not provide the exact expression of the probability of the
first passage time for our process {X(t)}t≥0 to exceed a given congestion threshold Fτ(t).
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Instead, we propose an analytic approximation, denoted as Hτ(t); see Proposition 1. We
determine in this subsection the approximate maximum intensity of the incident occur-
rences process needed to limit a given congestion level with a given probability. In order
to determine the approximate maximum value of this intensity, our approximations will
be based on historical data sets and the average values of the incident clearance rate. We
estimate the parameters of the distributions of the increases in the time needed for free
flow recovery after incident occurrences (gamma distributed with two parameters α and β,
and exponential distribution with intensity µ). As in Section 5.1, and in order to highlight
the intensity of the incident occurrences process, denoted by λ, we consider the following:
(1) Instead of the two probabilities Fτ(t) (see (6) or (7)) and Hτ(t) (see (12) in Proposition 1),
we denote, respectively, Fτ(x0, b, λ, t) and Hτ(x0, b, λ, t). Instead of the two specific approx-
imation probabilities H(P,G)

τ (t) and H(P,E)
τ (t) (see (18) in Remark 1 and (22) in Remark 2,

respectively), we denote H(G,c)
τ (x0, b, λ, t) instead of H(P,G)

τ (t) and H(E,c)
τ (x0, b, λ, t) instead

of H(P,E)
τ (t). We also denote Ex0,b,λ(τ) instead of Ex0(τ). We denote the expected val-

ues E(G,c)
x0,b,λ(τ) and E(E,c)

x0,b,λ(τ) instead of E(P,G)
x0 (τ) and E(P,E)

x0 (τ). Therefore, we have the
following proposition:

Proposition 3. The two probabilities Fτ(x0, b, λ, t) and Hτ(x0, b, λ, t) are increasing with respect
to λ.

Proof. For Fτ(x0, b, λ, t), we adopt the same proof of Proposition 4 from [1] (with consider-
ation of the process {X(t)}t≥0 (given (3) or (4)) here).

For Hτ(x0, b, λ, t), we have the following:

∂Hτ(x0, b, λ, t)
∂λ

= − t
Ex0,b,λ(τ)

2

∂Ex0,b,λ(τ)

∂λ
exp

(
− t
Ex0,b,λ(τ)

)
> 0,

where
∂Ex0,b,λ(τ)

∂λ
< 0, with the fact that 0 < λ < cb

E(Wi)
, and as b → ∞, c → 0; see

Definition 1.
Specifically, for the approximate probabilities H(G,c)

τ (x0, b, λ, t) and H(E,c)
τ (x0, b, λ, t),

we have the following:

1.
∂H(G,c)

τ (x0, b, λ, t)
∂λ

> 0 where
∂E(G,c)

x0,b,λ(τ)

∂λ
< 0 with the fact that 0 < λ < cb

αβ , and as
b → ∞, c → 0; see Definition 1.

2.
∂H(E,c)

τ (x0, b, λ, t)
∂λ

> 0 where
∂E(E,c)

x0,b,λ(τ)

∂λ
< 0 with the fact that 0 < λ < cbµ, and as

b → ∞, c → 0; see Definition 1.

5.2.1. Analysis over Finite Time Horizon

The aim of the analysis in this subsection is to find the approximate maximum value
of the incident occurrences process needed to avoid a given congestion threshold b with a
given probability p. The approximate maximum value of the incident occurrences process
is defined as λ̃(x0, b, p, t) and is given as follows:

λ̃(x0, b, p, t) = H−1
τ (x0, b, p, t) := max

{
0 < λ <

bc
E(Wi)

, Hτ(x0, b, λ, t) ≤ 1 − p
}

, (26)

where H−1
τ (x0, b, p, t) is the pseudo-inverse of Hτ(x0, b, λ, t).

Two cases are distinguished:
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1. The increases in the time needed for free flow recovery after incident occurrences are
gamma distributed with two parameters α and β, and the incident clearance rate is
modeled with the constant c. In this specific case, the approximate maximum value is
denoted by λ̃(G,c)(x0, b, p, t), and is as follows:

λ̃(G,c)(x0, b, p, t) = H
−1(G,c)
τ (x0, b, p, t)

:= max
{

0 < λ <
bc
αβ

, H(G,c)
τ (x0, b, λ, t) ≤ 1 − p

}
, (27)

where H
−1(G,c)
τ (x0, b, p, t) is the pseudo-inverse of H(G,c)

τ (x0, b, λ, t).
2. The increases in the time needed for free flow recovery after incident occurrences are

exponentially distributed with intensity µ, and the incident clearance rate is modeled
with the constant c. In this specific case, the approximate maximum value is denoted
by λ̃(E,c)(x0, b, p, t), and is as follows:

λ̃(E,c)(x0, b, p, t) = H
−1(E,c)
τ (x0, b, p, t)

:= max
{

0 < λ < bcµ, H(E,c)
τ (x0, b, λ, t) ≤ 1 − p

}
, (28)

where H
−1(E,c)
τ (x0, b, p, t) is the pseudo-inverse of H(E,c)

τ (x0, b, λ, t).

The analytic formula of approximate maximum value λ̃(x0, b, p, t) is not derived.
Specifically, the analytic formulas of approximate maximum values λ̃(G,c)(x0, b, p, t) and
λ̃(E,c)(x0, b, p, t) are not derived. However, Hτ(x0, b, λ, t) is increasing with respect to λ;
(0 < λ < cb

E(Wi)
). This also applies to two special cases: (1) H(G,c)

τ (x0, b, λ, t) is increasing

with respect to λ—0 < λ < cb
αβ ; and (2) H(E,c)

τ (x0, b, λ, t) is increasing with respect to λ;
(0 < λ < cbµ) (see Proposition 3). We propose here to compute the two approximate
maximum values λ̃(G,c)(x0, b, p, t) and λ̃(E,c)(x0, b, p, t) numerically, using algorithms such
as dichotomy, Fibonnacci, or the gold number.

5.2.2. Numerical Results

We propose in this part for this second application Example 2 accompanied by graphi-
cal illustrations. Two special cases are dealt with.

Example 2.

• For the first specific case λ̃(G,c)(x0, b, p, t):

1. We take c = 0.1 (the incident clearance rate), and α = 5 and β = 8 (the two parameters
for the gamma distribution of the increases in the time needed for free flow recovery after
incident occurrences). By using Formula (27), we calculate the approximate values for
the maximum intensity of the incident occurrences process needed to avoid the congestion
threshold b with respect to the probability p, for the finite time horizons t = 7500 and
t = 15,000. Figure 7a presents λ̃(G,c)(0, b, p, 7500) and λ̃(G,c)(0, b, p, 15,000). We also
have λ̃(G,c)(0, 180, 0.99, 7500) = 0.0228 and λ̃(G,c)(0, 180, 0.99, 15,000) = 0.0188.

2. Instead of c = 0.1 (the incident clearance rate), we take c = 0.05. In the same way as
in the first instance, we calculate the approximate values for the maximum intensity
of the incident occurrences process needed to avoid the congestion threshold b with
respect to the probability p, for the finite time horizons t = 7500 and t = 15,000.
Figure 7b illustrates λ̃(G,c)(0, b, p, 7500) and λ̃(G,c)(0, b, p, 15,000). We also have
λ̃(G,c)(0, 180, 0.99, 7500) = 0.0137 and λ̃(G,c)(0, 180, 0.99, 15,000) = 0.0114.

• For the second specific case λ̃(E,c)(x0, b, p, t):



Mathematics 2025, 13, 520 21 of 31

1. We take c = 1/7 (the incident clearance rate) and µ = 1/30 (the intensity of the
increases in the time needed for free flow recovery after incident occurrences). By using
Formula (28), we calculate the approximate values for the maximum intensity of the
incident occurrences process needed to avoid the congestion threshold b with respect to
the probability p, for the finite time horizons t = 10,000 and t = 20,000. In Figure 8a,
we present λ̃(E,c)(b/5, b, p, 10,000) and λ̃(E,c)(b/5, b, p, 20,000). Then, for example, we
have λ̃(E,c)(50, 250, 0.85, 10,000) = 0.0368, and λ̃(E,c)(50, 250, 0.85, 20,000) = 0.0229.

2. Instead of c = 1/7 (the incident clearance rate), we take c = 0.03. In the same way as in the
second instance, we calculate the approximate values for the maximum intensity of incident
occurrences process needed to avoid the congestion threshold b with respect to the probability
p, for the finite time horizons t = 10,000 and t = 20,000. In Figure 8b, we also present for
this instance λ̃(E,c)(b/5, b, p, 10,000) and λ̃(E,c)(b/5, b, p, 20,000). Then, for example, we
have λ̃(E,c)(50, 250, 0.85, 10,000) = 0.0182 and λ̃(E,c)(50, 250, 0.85, 20,000) = 0.0129.

5.2.3. Interpretation of Results

Figures 7 and 8 show 3D illustrations and contour lines for two specific cases of the nu-
merical approximations of the maximum values of the intensity of the incident occurrences
process, which we denoted, respectively, by λ̃(G,c)(x0, b, p, t) and λ̃(G,c)(x0, b, p, t). These
approximate maximum values of the intensity of the incident occurrences process are given
as functions of the traffic congestion threshold b and probability p for the two specific cases
presented with two different finite horizon times and initial states. Then, we have the fol-
lowing comments: First, we observe that the approximate maximum values λ̃(G,c)(x0, b, p, t)
and λ̃(E,c)(x0, b, p, t) decrease with respect to the probability p, which implies that for road
operators, in order to have a high level of assurance (represented with a high value of p)
that the congestion threshold b will not be surpassed, they should aim for low values of
the approximate maximum intensity of the incident occurrences process. Lower values
of the approximate maximum average incident count will contribute to maintaining the
desired level of assurance. Second, we observe that the approximate maximum values
λ̃(G,c)(x0, b, p, t) and λ̃(E,c)(x0, b, p, t) increase with respect to the congestion threshold b,
which indicates that for road operators, in order to have a high level of assurance that
the congestion threshold b will not be exceeded, it is necessary to reduce the approximate
maximum intensity of the incident occurrences process. By decreasing the approximate
maximum average values of the incident count, road operators can enhance their level
of assurance. Third, we observe that the approximate maximum values λ̃(G,c)(x0, b, p, t)
and λ̃(E,c)(x0, b, p, t) decrease with respect to time t. Similarly, if road operators aim to
guarantee that the congestion threshold b is not surpassed for extended periods of time t,
they should also strive for a low approximate intensity of the incident occurrence process.
By achieving a lower approximate maximum value of the incident count, road operators
can enhance their ability to prevent the congestion threshold from being exceeded over
longer times. Fourth, we observe that the approximate maximum values λ̃(G,c)(x0, b, p, t)
and λ̃(E,c)(x0, b, p, t) increase due to the increase in the incident clearance rate c and fixed
the intensity of the increases in the time needed for free flow recovery after incident oc-
currences µ. This means that for road operators to have a high level of assurance that the
congestion threshold b will not be exceeded, they should increase their efforts in incident
resorption, for example, by increasing the incident clearance rate. This will lead to higher
values of the approximate maximum intensity of the incident occurrence process for the
two specific cases. Consequently, the approximate maximum values of the resorted incident
count will also be high.
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(a)

(b)

Figure 7. 3D illustration and contour lines of λ̃(G,c)(x0, b, p, t). (a) 3D illustration of λ̃(G,c)(x0 =

0, b, p, t = 7500) (top left) with its contour lines (bottom left), and 3D illustration of λ̃(G,c)(x0 =

0, b, p, t = 15,000) (top right) with its contour lines (bottom right), for c = 0.1, α = 8, and β = 5.
(b) 3D illustration of λ̃(G,c)(x0 = 0, b, p, t = 7500) (top left) with its contour lines (bottom left), and
3D illustration of λ̃(G,c)(x0 = 0, b, p, t = 15,000) (top right) with its contour lines (bottom right), for
c = 0.05, α = 8, and β = 5.
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(a)

(b)

Figure 8. 3D illustration and contour lines of λ̃(E,c)(x0, b, p, t). (a) 3D illustration of λ̃(E,c)(x0 =
b
5 , b, p, t = 10,000) (top left) with its contour lines (bottom left), and 3D illustration of λ̃(E,c)(x0 =
b
5 , b, p, t = 20,000) (top right) with its contour lines (bottom right), for c = 1/7, µ = 1/30. (b) 3D
illustration of λ̃(E,c)(x0 = b

5 , b, p, t = 10,000) (top left) with its contour lines (bottom left), and 3D
illustration of λ̃(E,c)(x0 = b

5 , b, p, t = 20,000) (top right) with its contour lines (bottom right), for
c = 0.03, µ = 1/30.
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5.3. Determination of Approximate Minimum Value of Intensity of Increases in Time Needed for
Free Flow Recovery After Incident Occurrences µ Needed to Limit Given Congestion Level with
Respect to Given Probability

As in Sections 5.1 and 5.2, we use in this subsection the analytic approximation
probability of the first passage time for our process {X(t)}t≥0 to exceed a given congestion
threshold (which we denoted by Hτ(t); see Proposition 1). We determine the approximate
minimum intensity of the increases in the time needed for free flow recovery after incident
occurrences while avoiding a given congestion threshold with respect to a given probability.
In order to find this minimum value, we base our approximation on historical data sets.
The incident occurrences process is homogeneous Poisson with intensity λ, while the
average value of the incident clearance rate is modeled with a constant c. In order to
place greater emphasis on the intensity of the increases in the time needed for free flow
recovery after incident occurrences, noted µ, we emphasize its central role in the following
analysis: Instead of denoting the two probabilities Fτ(t) (see (6) or (7)) and Hτ(t) (see (12) in
Proposition 1), we denote, respectively, Fτ(x0, b, µ, t) and Hτ(x0, b, µ, t). In addition, instead
of denoting the probability HP,E

τ (t) (see (22) in Remark 2), we denote H(P,c)
τ (x0, b, µ, t).

Instead of denoting E(P,E)
x0 (τ) (see, for example, (21) in Remark 2) we denote E(P,c)

x0,b,µ(τ).
Therefore, we have the following proposition:

Proposition 4. The probabilities Fτ(x0, b, µ, t) and, Hτ(x0, b, µ, t) (i.e., H(P,c)
τ (x0, b, µ, t)) are

decreasing with respect to µ.

Proof. For Fτ(x0, b, µ, t), we adopt the proof of Proposition 6 from [1] (with consideration
of the process {X(t)}t≥0 (given (3) or (4)) here).

For HP,c
τ (x0, b, µ, t), we have

∂H(P,c)
τ (x0, b, µ, t)

∂µ
= − t

E(P,c)
x0,b,µ(τ)

2

∂E(P,c)
x0,b,µ(τ)

∂µ
exp

− t

E(P,c)
x0,b,µ(τ)

 < 0,

where
∂E(P,c)

x0,b,µ(τ)

∂µ
> 0, by bearing in mind that 0 < E(Wi) =

1
µ < cb

λ , and as b → ∞, c → 0;

see Definition 1.

5.3.1. Analysis over Finite Time Horizon

The aim of the analysis in this subsection is to determine the approximate minimum
intensity of the increases in the time needed for free flow recovery after incident occurrences,
denoted µ̃(x0, b, p, t), necessary to avoid a given congestion threshold b with a given
probability p. We consider the case where the incident occurrences process is Poisson,
and the incident clearance rate is modeled with a constant c. In this specific case, the
approximate value of the minimum intensity of the increases in the time needed for
free flow recovery after incident occurrences is denoted by µ̃(P,c)(x0, b, p, t), and is given
as follows:

µ̃(P,c)(x0, b, p, t) = H
−1(P,c)
τ (x0, b, p, t)

:= min
{

0 < E(Wi) =
1
µ
<

bc
λ

, H(P,c)
τ (x0, b, µ, t) ≤ 1 − p

}
, (29)

where H
−1(P,c)
τ (x0, b, p, t) is the pseudo-inverse of H(P,c)

τ (x0, b, µ, t).
The approximate minimum µ̃(P,c)(x0, b, p, t) is not given analytically. However, as

H(P,c)
τ (x0, b, µ, t) is decreasing with respect to µ; (0 < 1

µ < cb
λ ) (see Proposition 4), we can
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compute numerically µ̃(P,c)(x0, b, p, t) using one of the following algorithms: dichotomy,
Fibonnacci, or the gold number.

5.3.2. Numerical Results

We propose in this part for this third application Example 3 accompanied by graphical
illustrations, where we take the same values given in Table 3 (from [12] the two values f
and r). Only one special case is covered.

Example 3. For µ̃(P,c)(x0, b, p, t):

1. We take c = 0.3 (the incident clearance rate) and λ = 0.012 (the intensity of the inci-
dent occurrences process). By using Formula (29), we calculate the approximate values
for the minimum intensity of the increases in the time needed for free flow recovery af-
ter incident occurrences needed to avoid the congestion threshold b with respect to prob-
ability p for the finite time horizons t = 10,000, and t = 20,000. Figure 9a presents
µ̃(P,c)(0, b, p, 10,000) and µ̃(P,c)(0, b, p, 20,000). We also have µ̃(P,c)(0, 120, 0.70, 10,000) =
0.0492 and µ̃(P,c)(0, 120, 0.70, 20,000) = 0.0550.

2. Let us take c = 0.015 instead of c = 0.3 (the incident clearance rate). Figure 9b illustrates
µ̃(P,c)(0, b, p, 10,000) and µ̃(P,c)(0, b, p, 20,000). We also have µ̃(P,c)(0, 120, 0.70, 10,000) =
0.0612 and µ̃(P,c)(0, 120, 0.70, 20,000) = 0.0678.

5.3.3. Interpretation of Results

Figure 9 shows 3D illustrations and contour lines for the approximate minimum value of
the intensity of the increases in the time needed for free flow recovery after incident occur-
rences, which we denoted by µ̃(P,c)(x0, b, p, t). This approximate minimum value is given as a
function of the traffic congestion threshold b and the probability p. From Figure 9, and for the
case presented with two different finite horizon times and initial states, we have the following
comments: First, we can observe that the approximate minimum value µ̃(E,c)(x0, b, p, t) in-
creases with respect to probability p, which implies that, in order for road operators to have a
high level of assurance that the congestion threshold b will not be surpassed, they must have
a high value of the approximate minimum intensity of the increases in the time needed for
free flow recovery after incident occurrences. Second, we can observe that the approximate
minimum value µ̃(E,c)(x0, b, p, t) decreases with respect to the congestion threshold b, which
means that the road operators need to maintain low values of the congestion threshold b
to ensure that it is not exceeded. They must also have a high value of the approximate
minimum intensity of the increases in the time needed for free flow recovery after incident
occurrences. Third, we can observe that the approximate minimum value µ̃(E,c)(x0, b, p, t)
increases with respect to the time t, which means that the road operators must have a high
level of assurance, represented by a high value of p, to ensure that the congestion threshold b
is not exceeded; in particular, when considering longer times, they must have a high value of
the approximate minimum intensity of the increases in the time needed for free flow recovery
after incident occurrences. Fourth, by decreasing the incident clearance rate, and fixing the
intensity of the incident occurrences process, we can observe that the approximate minimum
value µ̃(E,c)(x0, b, p, t) increases with the decreasing of the incident clearance rate c. In order
for road operators to guarantee a high level of assurance that the congestion threshold b is
not exceeded, they must decrease the approximate minimum value of the intensity of the
increases in the time needed for free flow recovery after incident occurrences with respect to
increases in the incident clearance rate.
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(a)

(b)

Figure 9. 3D illustration and contour lines of µ̃(P,c)(x0, b, p, t). (a) 3D illustration of µ̃(P,c)(x0 =

0, b, p, t = 10,000) (top left) with its contour lines (bottom left), and 3D illustration of µ̃(P,c)(x0 =

0, b, p, t = 20,000) (top right) with its contour lines (bottom right), for c = 0.3, λ = 0.012. (b) 3D
illustration of µ̃(P,c)(x0 = 0, b, p, t = 10,000) (top left) with its contour lines (bottom left), and 3D
illustration of µ̃(P,c)(x0 = 0, b, p, 20,000) (top right) with its contour lines (bottom right), for c = 0.015,
λ = 0.012.

6. Conclusions
Within road networks, a multitude of incidents, including accidents, roadwork, and

vehicle breakdowns, exert a significant toll on road capacity, inevitably leading to subse-
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quent congestion. These incidents stand as prominent contributors to extensions of the
free flow recovery period, thereby compounding challenges. In this article, we presented a
mathematical model for the progression of incident frequency and duration. This model
built upon an established stochastic risk framework [1], thereby expanding its applicability
and effectiveness. Using a shot noise process, we introduced a novel reconfiguration of
the prevailing linear model governing the temporal requirements for free flow recovery.
Through this extension, we established an exponential decay pattern between successive
incident occurrences.

Our article encompassed an array of essential performance metrics, including the
probability of the first time that the process exceeds a given congestion threshold. Two
distinct methods were used to determine the previous probability, including an analyti-
cal approximation approach and a numerical simulation approach. This probability was
computed for two distinct cases: Firstly, when the incident occurrence process follows a
Poisson distribution and the increases in the time needed for free flow recovery after inci-
dent occurrences follow a gamma distribution; and second, when the incident occurrences
process follows a Poisson distribution, accompanied with an exponential distribution for
the increases in the time needed for free flow recovery after incident occurrences.

Based on the exponential approximation probability for the first time that the process
exceeds a given congestion threshold, we presented a range of applications spanning di-
verse traffic conditions and scenarios. Within this context, we established the approximate
minimum value of the incident clearance rate and the approximate minimum intensity
of the increases in the time needed for free flow recovery after incident occurrences, and
identified the approximate maximum intensity of the incident occurrences process; all
of these steps were necessary to preempt a designated congestion threshold at a speci-
fied probability.

In practical implementation, our findings serve as valuable tools, empowering road
operators to adeptly manage congestion levels while upholding desired guarantees. This
entails ensuring the availability of sufficient personnel and equipment to quickly clear
incidents and recover normal traffic flow, a focal point underscored in the first appli-
cation, which addresses two distinct cases concerning incident frequency and duration.
Furthermore, to confine congestion within predetermined assurances, the imperative lies
in maintaining minimal values for the approximate peak incident count. This specific
concern is explicitly tackled in the second application, which delves into two particular
cases centered on the mean incident clearance rate and the impact on the time-to-occurrence
of incidents. Conversely, our third application centers on congestion prevention with a
designated degree of certainty. Here, the crux lies in attaining diminished values for the
approximate peak average augmentation in time needed for free flow recovery after inci-
dent events. This application ties in with the mean incident clearance rate and a constant
incident occurrence frequency.

In the trajectory of our research, forthcoming endeavors should encompass an ex-
tension of the model to include secondary incidents, thus broadening the focus beyond
primary occurrences exclusively. The future work should also consider the spread of
incidents and correlations among traffic flows on adjacent roads, providing a more compre-
hensive understanding of the dynamics within transportation networks. Additionally, it
should be interesting to develop a traffic flow model that offers both behavioral interpre-
tation and empirical validation. This would involve incorporating a detailed analysis of
driver behaviors during incidents and clearance operations.
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Appendix A. Particular Cases for the Cumulative Distribution Function
(cdf) and the Probability Density Function (pdf) FX and fX
for Process {X(t)}t≥0

Firstly, we derive the joint probability density function, denoted by hW,T , and the joint
cumulative distribution function, denoted by HW,T , in our two particular cases:

1. If the incident occurrences process is Poisson with intensity λ(t) = λ for all t ≥ 0,
and the increases in the time needed for free flow recovery after incident occurrences
(Wi)i∈N∗ are independent and identically distributed with gamma distribution with
two parameters α and β, then we denote in this case H(P,G)

W,T instead of HW,T (see (10))

and h(P,G)
W,T instead of hW,T (see (11)), and for x − x0e−ct > 0, we have

H(P,G)
W,T (x − x0e−ct) =

1
Γ(α)

∫ 1

0
γ

(
α,

(xect − x0)e−cty

β

)
dy,

and

h(P,G)
W,T (x − x0e−ct) =

(xect − x0)
α−1

βαΓ(α)

∫ 1

0
exp

(
−(α − 1)cty − (xect − x0)e−cty

β

)
dy,

where γ(α, m) =
∫ m

0
vα−1e−vdv is the lower incomplete gamma function, and Γ(α) =∫ ∞

0
vα−1e−vdv is the gamma function.

2. If (Wi)i∈N∗ are independent and identically distributed with an exponential distribu-
tion with intensity µ (i.e., two parameters α = 1 and β = 1/µ), instead of a gamma
distribution, then, in this case, we denote H(P,E)

W,T instead of HW,T (see (10)) and h(P,E)
W,T

instead of hW,T (see (11)), and for x − x0e−ct > 0, we have the following:

H(P,E)
W,T (x − x0e−ct) =

1
ct
(
ct + Ei

(
−µ(x − x0e−ct)

)
− Ei

(
−µ(xect − x0)

))
,

and

h(P,E)
W,T (x − x0e−ct) =

1
ct(x − x0e−ct)

(
e−µ(x−x0e−ct) − e−µ(xect−x0)

)
,

where Ei is the exponential integral function.

Let us continue with the two particular cases above, and return to the formulas of fX

and FX given in (9) and (8), respectively. We have the following:

1. If the incident occurrences process is Poisson with intensity λ, (i.e., λ(t) = λ, ∀t ≥ 0)
and the increases in the time needed for free flow recovery after incident occurrences
(Wi)i∈N∗ are independent and identically distributed with a gamma distribution with
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two parameters α, and β, then we denote in this case F(P,G)
X instead of FX (see (8)) and

f (P,G)
X instead of fX (see (9)), and we have the following:

F(P,G)
X (x, t) = e−λt

(
Ix−x0e−ct>0 +

∞

∑
n=1

H∗n(P,G)
W,T (x − x0e−ct)

(λ(t))n

n!

)
,

and

f (P,G)
X (x, t) = e−λt

∞

∑
n=1

h∗n(P,G)
W,T (x − x0e−ct)

(λt)n

n!
,

where I is the indicator function.
2. If (Wi)i∈N∗ are independent and identically distributed with an exponential distribu-

tion with intensity µ (i.e., two parameters α = 1, and β = 1/µ), instead of a gamma
distribution, then, in this case, we denote F(P,E)

X instead of FX (see (8)) and f (P,E)
X

instead of fX (see (9)), and we have the following:

F(P,E)
X (x, t) = e−λt

(
Ix−x0e−ct>0 +

∞

∑
n=1

H∗n(P,E)
W,T (x − x0e−ct)

(λ(t))n

n!

)
,

and

f (P,E)
X (x, t) = e−λt

∞

∑
n=1

h∗n(P,E)
W,T (x − x0e−ct)

(λt)n

n!
,

where I is the indicator function.

Appendix B. Particular Cases for Expected and Variance Values of Time
Needed for Free Flow Recovery Process

In the following, we present particular cases for the expected and variance values of
the time needed for the free flow recovery process:

1. In the specific case where the incident occurrences process {N(t)}t≥0 is homogeneous
Poisson with intensity λ, (i.e., λ(t) = λ, ∀t ≥ 0), and where the increases in the time
needed for free flow recovery after incident occurrences (Wi)i∈N∗ are independent
and identically distributed with gamma distribution (so E(Wi) = αβ, and E(W2

i ) =

β2(α + α2)), we denote m(P,G)
X (t) instead of mX(t), and σ

2(P,G)

X (t) instead of σ2
X(t).

Then, we have

m(P,G)
X (t) = x0e−ct +

αβλ

c
(
1 − e−ct),

and

σ
2(P,G)

X (t) =
β2(α + α2)λ

2c
(1 − e−2ct).

By letting t → ∞, we denote m(P,G)
X instead of mX , and σ

2(P,G)

X instead of σ2
X . Then, we

have m(P,G)
X = αβλ/c and σ

2(P,G)

X = β2(α + α2)λ/(2c).
2. If the increases in the time needed for the free flow recovery after incident occurrences

(Wi)i∈N∗ follow an exponential distribution instead of a gamma distribution, then
E(Wi) = 1/µ, and E(W2

i ) = 2/µ2. In this case, we denote m(P,E)
X (t) instead of mX(t)

and σ
2(P,E)
X (t) instead of σ2

X(t). Then, we have

m(P,E)
X (t) = x0e−ct +

λ

cµ

(
1 − e−ct),
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and
σ

2(P,E)
X (t) =

λ

cµ2 (1 − e−2ct).

By letting t → ∞, we denote also m(P,E)
X instead of mX and σ

2(P,E)
X instead of σ2

X . Then,

we have m(P,E)
X = λ/(cµ) and σ

2(P,E)
X = λ/(cµ2).

Appendix C. Expansion Series of Expected Value of First Passage Time for

Our Process {X(t)}t≥0 to Exceed Given Congestion Threshold E(P,E)
x0 (τ)

Returning to (21) or to (12) from reference [23], we derive expansion series of the ex-
pected value of the first passage time for our process {X(t)}t≥0 to exceed a given congestion
threshold E(P,E)

x0 (τ). In this derivation, we use the following components:

1. The expansion series, described as eµbv − eµx0v(1− v) =
∞

∑
n=0

(µbv)n − µx0vn + vµx0vn

n!
.

2. The integral function, defined as
∫ 1

0
vn(1 − v)a−1dv =

Γ(a)Γ(n)
Γ(a + n)

for a > 0, n > 0,

where Γ(a) =
∫ ∞

0
va−1e−vdv is the gamma function.

The above components are essential in order to derive easily the following formula:

E(P,E)
x0 (τ) =

1
λ
+

bµ

λ
2F2

(
1, 1; 2,

λ

c
+ 1; bµ

)
− µx0

λ + c 2F2

(
1, 1; 2,

λ

c
+ 2; µx0

)
, (A1)

where:

• 2F2

(
1, 1; 2,

λ

c
+ 1; bµ

)
:=

∞

∑
n=0

(1)n(1)n

(2)n(
λ
c + 1)n

(bµ)n

n!
=

Γ
(

λ
c + 1

)
bµ

∞

∑
n=1

(bµ)n

nΓ
(

λ
c + n

) ,

• 2F2

(
1, 1; 2,

λ

c
+ 2; µx0

)
:=

∞

∑
n=0

(1)n(1)n

(2)n(
λ
c + 2)n

(µx0)
n

n!
=

Γ
(

λ
c + 2

)
µx0

∞

∑
n=1

(µx0)
n

nΓ
(

λ
c + 1 + n

) .

The above formulas are two different specific functions of the generalized hyper-
geometric function, where (.)n is the Pochhammer symbol and Γ(.) is the gamma function.
We note that Formula (A1) is similar to (12) from reference [23].
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